Optimization of antibacterial peptides by genetic algorithms and cheminformatics.

نویسندگان

  • Christopher D Fjell
  • Håvard Jenssen
  • Warren A Cheung
  • Robert E W Hancock
  • Artem Cherkasov
چکیده

Pathogens resistant to available drug therapies are a pressing global health problem. Short, cationic peptides represent a novel class of agents that have lower rates of drug resistance than derivatives of current antibiotics. Previously, we created a software system utilizing artificial neural networks that were trained on quantitative structure-activity relationship descriptors calculated for a total of 1400 synthetic peptides for which antibacterial activity was determined. Using the trained system, we correctly identified additional peptides with activity of 94% accuracy; active peptides were 47 of the top rated 50 peptides chosen from an in silico library of nearly 100,000 sequences. Here, we report a method of generating candidate peptide sequences using the heuristic evolutionary programming method of genetic algorithms (GA), which provided a large (19-fold) improvement in identification of novel antibacterial peptides. Approximately 0.50% of peptides evaluated during the GA method were classified as highly active, while only 0.026% of the nearly 100,000 sequences we previously screened were classified as highly active. A selection of these peptides was tested in vitro and activities reported here. While GA significantly improves the possibility of identifying candidate peptides, we encountered important pitfalls to this method that should be considered when using GA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS

In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...

متن کامل

OPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS

Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization o...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

Optimization of Cutting Parameters Based on Production Time Using Colonial Competitive (CC) and Genetic (G) Algorithms

A properly designed machining procedure can significantly affect the efficiency of the production lines. To minimize the cost of machining process as well as increasing the quality of products, cutting parameters must permit the reduction of cutting time and cost to the lowest possible levels. To achieve this, cutting parameters must be kept in the optimal range. This is a non-linear optimizati...

متن کامل

A New Mathematical Model in Cell Formation Problem with Consideration of Inventory and Backorder: Genetic and Particle Swarm Optimization Algorithms

Cell Formation (CF) is the initial step in the configuration of cell assembling frameworks. This paper proposes a new mathematical model for the CF problem considering aspects of production planning, namely inventory, backorder, and subcontracting. In this paper, for the first time, backorder is considered in cell formation problem. The main objective is to minimize the total fixed and variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical biology & drug design

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 2011